未来のクルマはなぜ空っぽなのか

日産自動車(株)総合研究所 モビリティ&AI 研究所

上田哲郎

市販車向け自動運転車両(L2+)

モビリティサービス向け自動運転車両(L4)

AIと工学

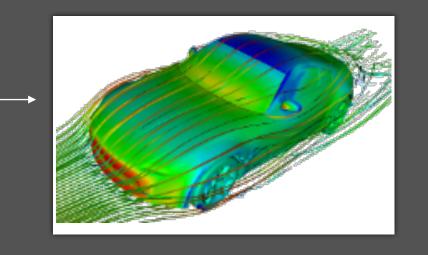
未来のクルマには二つの空っぽがある

不完全なフルオート

- \rightarrow Alによるパーフェクトオート
- → インタフェースレス
- → 空っぽの車

DX推進、AI推進

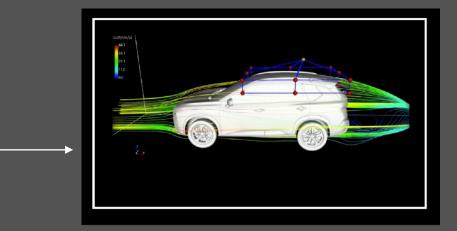
- → DX完了、AIによる置き換え
- → ダークオフィス、ダークファクトリー
- → 空っぽの自動車産業


他がやらぬことをやる、は 日産DNA

創業者:鮎川義介

やっちゃえ日産

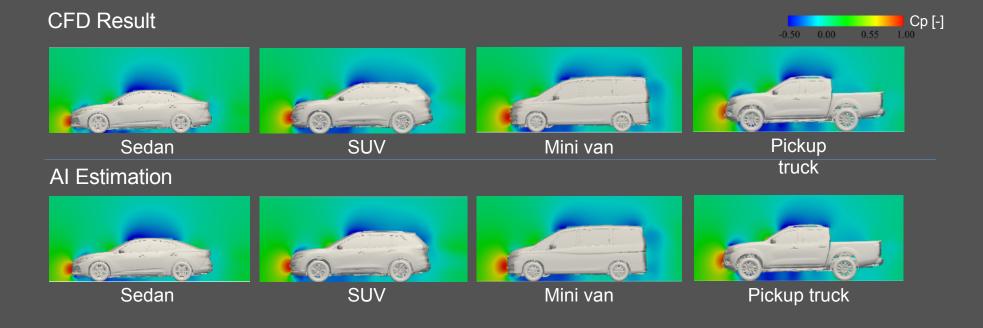
他がやらぬことをやる。他とは誰のこと?


自動車×コンピュータの鉄板:エアロダイナミクス

24h スパコンを使ったCFD

Computational Fluid Dynamic

CADデータ



2sec Alを使った空力推定

自技会 日産自動車論文より

CFD vs Al

推定性能はほぼ互角、時間性能は10万倍

CFD vs Al

空力の専門家

微分方程式

ナビエ・ストークス方程式

計算機の専門家

数值解法

計算機科学

プログラマ

データサイエンティスト

AI (深層学習 DNN)

AI界隈のプログラミング言語

Python AlのならずWebやサーバサイドなど何でもこなす万能高級言語。

自然言語

Python

C言語

アセンブリ言語

マイクロコード (0/1)

そもそもプログラミング言語は 機械と人とのセマンティクスギャップを埋めるための HMI(Human Machine Interface)だったのです。

機械が自然言語を話すようになった現在 プログラミング言語はその役目を終えたと言えるのでは。

そうした時、 この先もずっとAIが、人が読めるプログラミング 言語を出力してくれる保証はないのです。

汎用性 安全性 説明性

ロジック

E2E AI

 \triangle

×

AIが生成した ロジック

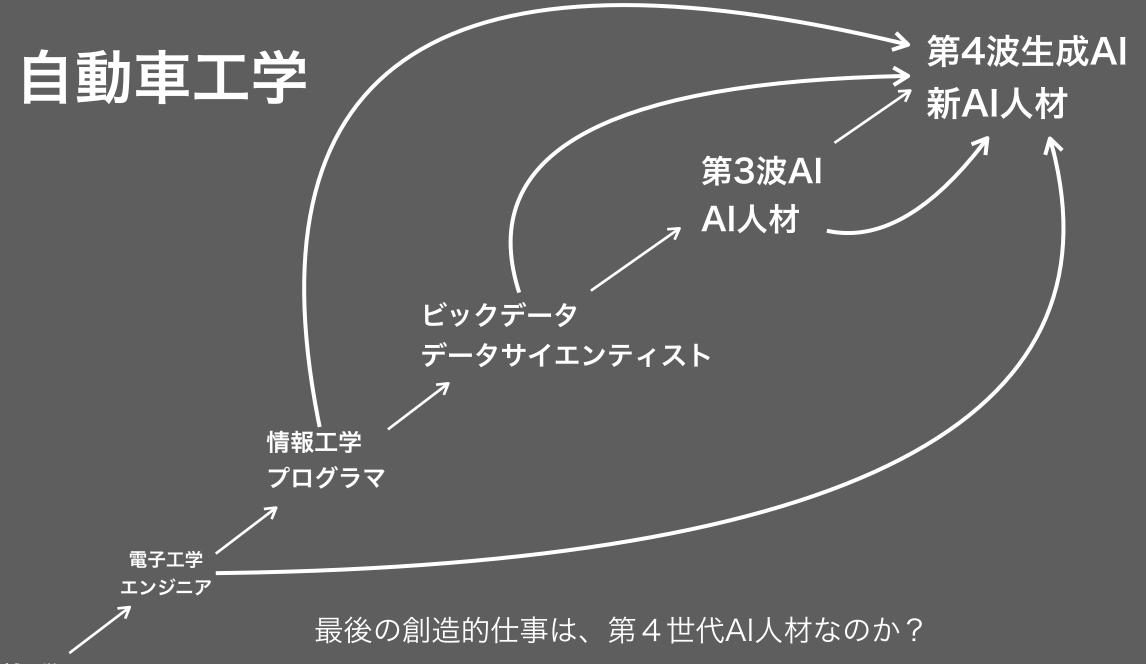
 \triangle

?

X

- ·Alに置き換わるかどうかは、**それが単純仕事か創造的な仕事か、**ではなかった。
- ・Alに置き換わるかどうかは、<u>デジタルと相性がよいかどうか</u>、で決まる。
- ·デジタル化を推進する**DXとはすなわちAIの活躍の場を広げていく**、ことを示す。
- ・将来、**人類が単純仕事、創造仕事はAI**という可能性まである。

自動車工学の現場に押し寄せる第4世代AI:


微分方程式(数学者)、

多変量解析などの機械学習(データサイエンティスト)、

プログラミング(プログラマー)、

工業デザイン(カーデザイナー)

第3世代のAIの使い手(旧AI人材)、

第4世代AI人材のお仕事

「AIがやらぬことをやる」

AlにできることはAlにやらせる

自動運転はAIにできること?

市販車向け自動運転車両(L2+)

モビリティサービス向け自動運転車両(L4)

市販車向け自動運転車両(L2+)

モビリティサービス向け自動運転車両(L4)

社会適用

社会需要性、社会実験、遠隔監視

法整備、啓蒙活動

コンプライアンス

車両適用

冗長性などより堅牢な制御系 安全メカニズム 車両制御、ECU

システム

E2E AI

日産自動車の総合研究所 HDMAP+ルールベース

AIは人類最後の発明になる可能性

DX完了後の世界では 工学者の哲学が必要なのでは

未来のクルマはなぜ空っぽなのか

ありがとうございました