自動運転・ADASの技術精度を高め、開発を加速させるシミュレーション技術活用の最前線

2025/10/9

株式会社マクニカ イノベーション戦略事業本部 スマートシティ&モビリティ事業部

マクニカ概要

PACNICA

_{設立} 1972年 グループ売上 **1 兆円**

従業員 拠点

5,000名 28か国91地域

VAD*モデル

半導体、ネットワーク製品など 世界中から集めた最先端テクノロジー提供

サービス・ソリューションモデル

お客様の課題を解決する幅広いサービス・ソリューション

*VAD=高付加価値ディストリビューションモデル

1

事業概要

あらゆる事業に、最先端技術を。

マクニカはグローバルにおける最先端テクノロジーのソーシング力と技術企画力をベースに、お客さまの課題を解決する幅広いソリューションを提供しています。

半導体

日本屈指のポートフォリオを誇り、製品開発時の 技術サポートから、ものづくりのアイデアを具現化 する手法まで、幅広いサービスを提供します。

セキュリティ

最前線の技術力と情報力を駆使して、高度化 するサイバー攻撃からビジネスを守ります。

CPSセキュリティ

エッジ端末の開発段階からセキュリティリスクを考慮し、IoTデバイスの運用を支援します。

ネットワーク

クラウド利活用に向けた製品の導入から運用・ サポートまでのサービスを提供。官公庁等への 導入実績を誇ります。

スマートシティ/モビリティ

自動運転実証開発支援、ハード/ソフトウェアやAI構築・組み込みなどを提供します。

サービスロボット

人とロボットが協働する将来を目指し、生活を 支えるロボットを提供しています。

フード・アグリテック

持続的・安定的な食料供給が行われる社会実現のため、AI・ロボティクスやIoT・バイオを用いた食と農に関する技術革新を実施します。

コネクティビティ

センサーテクノロジーの知見とものづくりの支援 実績を強みに、最適な「つなぐ」技術を提供 します。

スマートマニュファクチャリング

お客さまのあらゆる経営課題に寄り添い、ものづくりの現場をデジタル化。グランドデザインをともに描き、ビジネス変革を支援します。

ヘルスケア

テクノロジーの活用により、超高齢化社会を 支える医療介護ソリューションを提供します。

サーキュラーエコノミー

持続可能な社会の実現に向け、脱炭素ソリューションや省エネ製品、EMSなどのサービスを提供します。

DX

システムデータだけではなく、非構造化データの分析・活用により、企業が抱えるビジネス課題をビジネスチャンスへ繋げます。

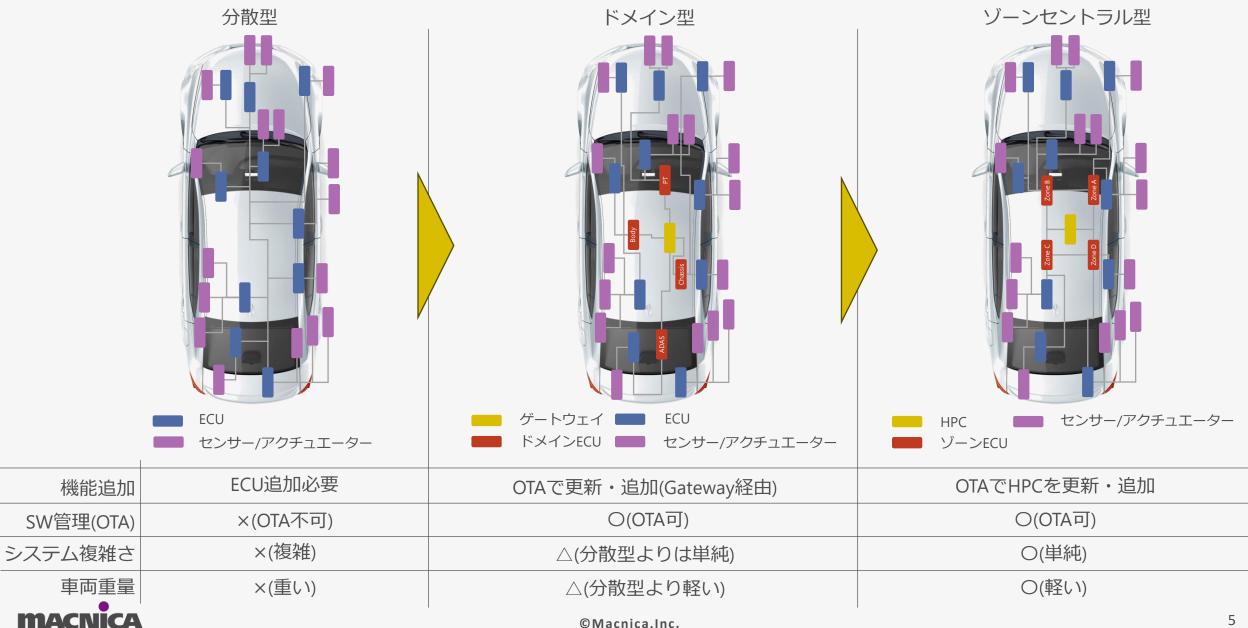
コンサルティング

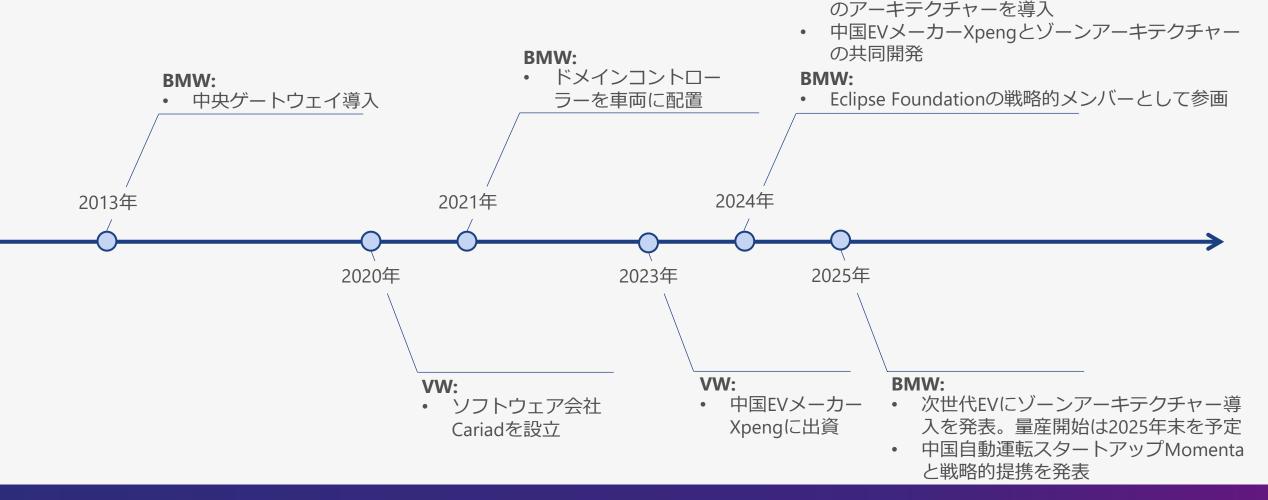
DX実現に向けたハードウェア提供、システム 構築、効果検証、実運用まで一貫したコンサル ティングを実施します。

macnica.ai

macnica.aiは、マクニカのAIビジネスを統括する事業ブランド名です。国内外の人、技術、経験をつなぎ、デジタル変革をお客さまとともに実現します。

Agenda


- 1. ソフトウェア・デファインド・ビークル
- 2. アルゴリズムとセンサーフュージョン
- 3. 高度自動運転/E2E自動運転へのアプローチ
- 4. 開発を加速させるシミュレーション技術
- 5. まとめ


ソフトウェア・デファインド・ビークル

SDV化による車両システムアーキテクチャーの変化

欧州のSDV取り組み

VW:

• 米EVメーカーRivianとの合併事業を発表、Rivian

欧州メーカーはすでにドメインアーキテクチャーへの移行を進め、次のステップであるゾーンアーキテク チャーへの移行を目指している。また、中国メーカーや新興メーカーとの連携も加速している

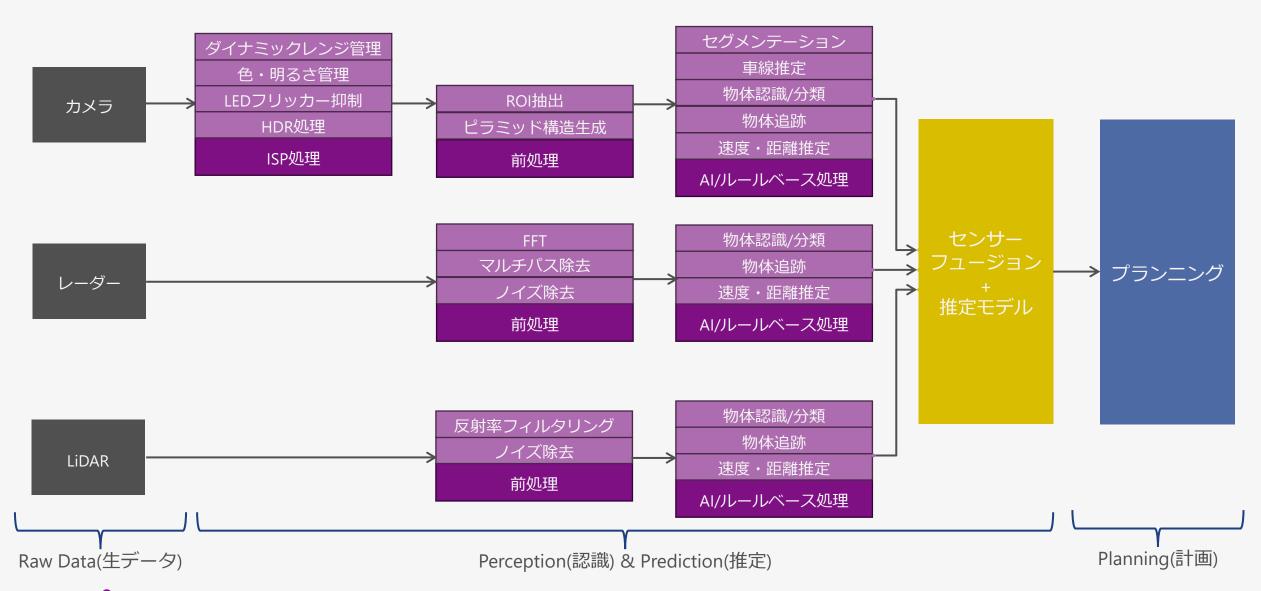
アルゴリズムとセンサーフュージョン

L2からL3/L4の高度自動運転へ

- センサーはカメラとミリ波レーダー、 超音波センサーで構成
- センサーはカメラ、ミリ波レーダー、 超音波センサー
- カメラ、ミリ波レーダー、超音波センサーすべてのセンサーの搭載数が 増加

- センサーはカメラ、ミリ波レーダー、 超音波センサー、LiDAR
- カメラ、ミリ波レーダー、超音波センサーすべてのセンサーの搭載数が増加、加えてLiDARセンサーも搭載

AD/ADAS機能を搭載する車両のセンサーは種類・数ともに増加しており、今後もさらに増えることが見込まれる。このため、従来の認識アルゴリズムやセンサーフュージョン方法の検討が必要になる


従来型コンピュータービジョンとニューラルネットワーク

	従来型コンピュータービジョン (従来型CV)	ニューラルネットワーク (NN)
例	HOG+SVM、Sobelフィルタ、色閾値、 カルマンフィルタ	YOLO、SegNet、LSTM、Vision Transfer
解釈性	解釈性が高く、デバックしやすい	ブラックボックスで結果の解釈が難 しい
データ	学習データが少なくて済む	大量の学習データが必要
計算	軽量で動作	GPUや専用ハードが必要
センサー処理	多様な入力は対応しにくい	多様な入力でも対応可能
性能	汎化性能が低い	汎化性能が高い

従来型CVは限定的な用途(例:フロントカメラ)ならば有効だが、 高度自動運転を実現するために多数のセンサーを統合するにはニューラルネットワークの技術が必要



センサーフュージョン - Late Fusion -

MACNICA

センサーフュージョン - Early Fusion -

MACNICA

Late FusionとEarly Fusionの比較

	Late Fusion	Early Fusion
統合方法	センサーデータを個別に処理した後 に統合	センサーデータを初期段階で統合
柔軟性	モジュールの追加・削除が容易	センサーの数・種類によって複雑な 設計になる
計算コスト	低い	高い
学習コスト	センサーごとに学習できるため、比 較的少ない	多くのセンサーデータを同時に扱う ため大量のデータが必要
認識精度	センサーごとの個別処理、統合後の アルゴリズムによって大きく変わる	ニューラルネットワーク(NN)を使用 して高度な認識も可能
センサー間相互作用	個別で処理するため学習が限定的、 複雑な状況に対応できない	センサーデータを直接学習するため 複雑な状況にも強い

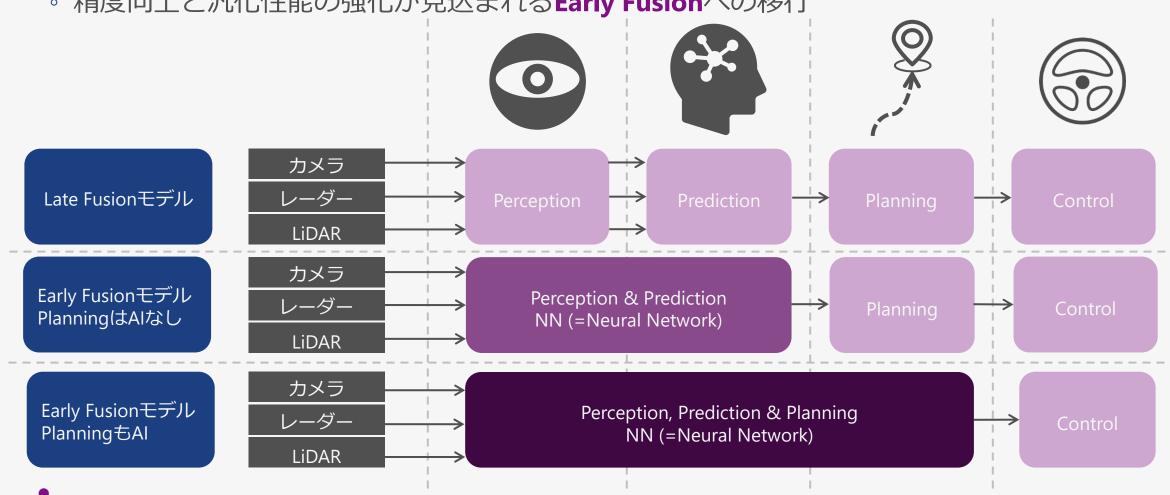
高度自動運転には多くの数・種類のセンサーが必要になってきており、認識精度をあげていくにはEarly Fusionを採用していく必要がある。各国ではすでにEarly Fusionの実装が進んでいる

Late FusionとEarly Fusionの例: アノテーション

2Dアノテーション

4D (3D+Time)アノテーション

	2Dアノテーション	4Dアノテーション
特徴	平面(2D)でアノテーション	空間(3D) + 時間同期でアノテーション
統合方法	各センサーで個別に処理後に統合	複数センサーデータを一括統合
精度	個別処理の誤差が積み重なり、精 度にばらつきがでることがある	高精度なラベル付与が可能
アノテーション 工数	センサーの数に応じてアノテー ションが必要	一括でラベル付与が可能、効率的 なアノテーションが可能


高度自動運転/E2E自動運転へのアプローチ

アルゴリズムとフュージョン方法

多数のセンサーを搭載する高度自動運転やE2E自動運転のためには…

- 。マルチモーダルデータに対応可能なNNアルゴリズムの採用
- 。精度向上と汎化性能の強化が見込まれるEarly Fusionへの移行

MACNICA

15

データセントリックAI

自動運転におけるNNアルゴリズム開発にはModel-Centric Alではなく、**Data-Centric Al**のアプローチのほうが有効

1

AIの誤認識・誤判断を抑える必要があるため

- センサー間の高精度な時刻同期とキャリブレーション
- 高精度で一貫性のあるアノテーションデータの生成

2

どんなデータで学習させるかが性能を左右するため

- 多様なシーンのデータをバランスよく取得する
- 不足データはシミュレーションで疑似データ生成して補完

3

データ再利用と継続的な改善で品質向上ができるため

- アノテーションデータを見直してモデルの再学習
- 一度収集したデータをシミュレーター上で条件を変えて検証・改善

自動運転開発におけるデータフライホイール

収集データで評価

シミュレーターで評価

疑似データ生成

デジタルツイン構築

4. AIモデル評価

多様なデータの準備 不足データの補完 既存データの利活用

- ・ データ収集の効率up
- ・ モデル評価の効率up
- モデル性能up

リアルデータ収集

2. アノテーション

疑似データ生成

デジタルツイン構築

1. データ収集

3. AIモデル学習

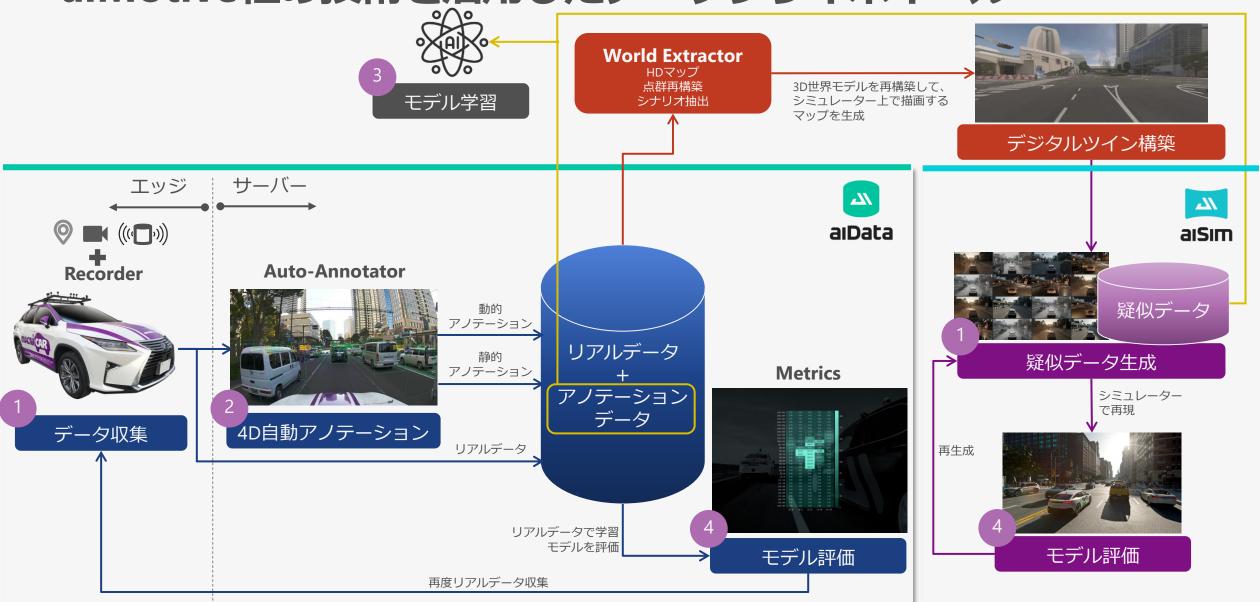
OEM様/Tier1様自社または 提携企業様で学習

開発を加速させるシミュレーション技術

aiMotive社

- 沿革:
 - 。 2015年 設立
 - 。 2022年 ステランティスが買収

*aiDrive以外はオープンマーケット向けツールを提供する独立した組織として運営中


- 本社:
 - 。 ブダペスト、ハンガリー
- 拠点:
 - ヨーロッパ、アメリカ、日本など
- 従業員数:
 - 。 270名+
- 特長:
 - 。 独自AIアルゴリズム
 - 。 シミュレーションツール
 - 。 データ収集ツール
 - 。 ハードウェアIP
 - 。 自動運転ソフトウェア

19

aiMotive社の技術を活用したデータフライホイール

MACNICA

3D再構築と動的オブジェクトの両立

World ExtractorはNeural Radiance Fields(NeRF)技術をベースとしている

NeRFの特徴

- ニューラルネットワーク上で3D空間の色と密度を学習
- 高品質な新視点(Novel View Synthesis, NVS)画像を生成
- 学習コストが高く、リアルタイムのレンダリングには不向き
- 動的オブジェクトの再構築が難しい

World Extractor

- 3D Gaussian Splattingを組み合わせて処理速度を高速化
- カメラRGBのみではなく、LiDARやGNSSなどの複数センサーに対応
- 動的オブジェクトは物理ベースのシミュレーションaiSimを使うハイブリッド レンダリング方式

弊社車両を使用したデジタルツイン構築・疑似データ生成

Real Midrange Front Camera

Simulated Midrange Front Camera

まとめ

まとめ

POINT 1

欧州や中国では、ドメインアーキテクチャからゾーンアーキテクチャへの移行がすでに始まっており、さらに欧州メーカーは有力な中国メーカーや新興メーカーとの提携を加速している

POINT 2

複数センサーで制御する高度自動運転には、マルチモーダルデータに対応可能なニューラルネットワーク(NN)の開発とEarly Fusionの適用が不可欠であり、欧州や中国の自動運転技術はこれらを中心に構築されている

POINT 3

ニューラルネットワークの開発には、リアルデータだけでは限界があるため、 既存データを活用したデジタルツインやシミュレーションによる疑似データの 利用が有効である

高度自動運転開発には**データ**の重要性が増しており、**高品質な学習データを効率的に、バラン**スよく収集するために仮想技術やシミュレーション技術は重要な要素になる

24

- ・本資料に記載されている会社名、商品またはサービス名等は各社の商標または登録商標です。なお、本資料中では、「™」、「®」は明記しておりません。
- ・本資料のすべての著作権は、第三者または株式会社マクニカに属しており、(著作権法で許諾される範囲を超えて)無断で本資料の全部または一部を複製・転載等することを禁じます。
- ・本資料は作成日現在における情報を元に作成されておりますが、その正確性、完全性を保証するものではありません。